14006-ORC-J 1 (12) # 10. Reaction Equations Module #### **SUMMARY** Clicking the **Reaction Equations** button in the main menu of HSC shows the Reaction Equations Window, see **Fig. 1**. With this module you can calculate the heat capacity, enthalpy, entropy and Gibbs energy values of a single species as well as of specified reactions between pure substances. The module also enables graphing of the results as a function of temperature. See the reference state definitions, valid notations, and abbreviations for the description of the chemical formulae in Chapter 28 (section 28.2). 14006-ORC-J 2 (12) #### 10.1. One Chemical Substance Fig. 1. Reaction Equations window of HSC Chemistry. By entering a single chemical formula into the **Formula** box you will get similar tables of thermochemical data as presented in many thermochemical data books. HSC will, however, provide the results faster and exactly at the temperatures which you really want. **Calculate** also produces a chart which allows the results to be seen in graphical form as well. Please follow these steps: - Write a chemical formula in the formula box, (top left in Fig. 1) For example: Fe, Na2SO4, Al2O3, SO4(-a), H(+a) or SO2(g). See the valid notation and syntax of chemical formulae in Chapter 28 (section 28.2). - 2. Select the lower limit, upper limit and temperature step. - 3. Select the Temperature and Energy Units and the format of the results (Normal or Delta) from the "Options" menu. #### Normal (Absolute scale): H(species), S(species) and C(species) This format is used for example in the famous I. Barin, O. Knacke, and O. Kubaschewski data compilation¹. ## **Delta (Formation functions):** ``` \begin{array}{ll} \Delta H &= \text{H(species)} - \Sigma \text{ H(elements)} \\ \Delta S &= S(\text{species}) - \Sigma \text{ S(elements)} \\ \Delta G &= G(\text{species}) - \Sigma \text{ G(elements)} \\ \Delta G &= G(\text{ions}) - \Sigma \text{ G(elements)} + z/2 \cdot G(H_2(g)) - z \cdot G(H(+a)) \\ z &= \text{charge}. \end{array} ``` This format is used for example in the NBS and Pankratz Tables^{2,3}. 4. The **Collect Data** option will collect several calculation results on different sheets. Data from these sheets can be plotted into a single chart by using the **Plot all data**Copyright © Outotec Oyj 2014 ## HSC 8 – Reaction Equations November 20, 2014 Research Center, Pori / Lauri Mäenpää, Antti Roine 14006-ORC-J 3 (12) - option in Chart Options. The **Plot all data** feature requires that the calculations of different sheets use the same units (energy and temperature) and also that they are in the same format (Normal or Delta, affects only pure substance calculations). Pure substance calculations and reaction calculations cannot be plotted in the same graph. - 5. Select **Show Transitions** from the "Options" menu if you also want to see the data at the phase transformation temperatures, such as crystal structure changes and melting. - 6. Select **Criss-Cobble** from the "Options" menu if you want a Criss-Cobble extrapolation for the heat capacity of aqueous species, see Chapter 28 (section 28.4.) - 7. Click **Calculate** to get the results on the screen. - 8. Click **Print** from the "File" menu to print the results. - 9. Click **Copy Sheet** from the "Sheet" menu to get the tabulated results into the Clipboard, then you can easily paste the results to other Windows applications, for example, to MS Excel. It is possible to copy and paste the content of individual cells to other applications using **Copy**. - 10. Click **Save As...** from the "File" menu to save the entire workbook as an .rea8 file. These files can be opened for later use with **Open...** from the "File" menu. #### Note: - 1. It is easy to check the basic data that has been used in the reaction module calculations from the database. In Fig. 1, select the formula in the Reaction Equation box and press **Browse...**. - The table in Fig. 1 has some formatting and Copy Paste functions as do other tables in HSC Chemistry. These features help to create a good printed copy of the results for various purposes. - 3. HSC searches for the species data first from the **Own database**. If it does not find a species there, it will search from the **Main database**. Therefore HSC always uses data in the Own database if the same species exists in both Own and Main databases. - 4. If you have selected **Delta format** for the results, HSC will also search for data for the necessary elements and calculate the formation functions of enthalpy, entropy, and Gibbs energy. Usually the original experimental data is in this format: however, sometimes the comparison of data in this format may be more difficult because the data sources often use different data for elements. - 5. HSC will make a **Criss-Cobble extrapolation** for the heat capacity of aqueous species at elevated temperatures (> 25 °C) if the Criss-Cobble option is selected. The extrapolation is not done if A and B of the heat capacity coefficients A, B, C, and D exist in the HSC Chemistry databases. The extrapolation error increases rapidly at higher temperatures. More information on extrapolation is given in Chapter 28 (28.4.) - 6. For **aqueous species** it is recommended to set: Lower temperature = 25 °C Upper temperature = 300 °C Step = $25 \, ^{\circ}\text{C}$ November 20, 2014 Research Center, Pori / Lauri Mäenpää, Antti Roine 14006-ORC-J 4 (12) #### 10.2. One Chemical Substance Results After pressing the Calculate button in **Fig. 1**, you will get the results in a table in the lower part of the window as well as a graph for a single property. You can save and print these results by using options found in the File and Edit menus: - 1. Click **Save As...** if you wish to recalculate the results later. The **Save As...** function will also save the settings used in **Fig. 1**. You can read these files back to HSC using **File Open**. - 2. Click **Print** if you want a paper copy. - Click Copy to put the results of selected cells into the Clipboard, then you can easily paste the results, for example, to MS Excel. Click Copy Sheet to put all the results of the sheet into the Clipboard. - 4. Click **Export To Excel** to save the entire workbook, containing several sheets, in MS Excel format. - 5. Click **Copy Chart** from the "Edit" menu to copy the chart to the clipboard, from where the graph can be pasted for example into MS Word. - 6. Click **Save Chart** from the "File" menu to save the chart as a vector image. - 7. You can also use the tools embedded in the chart to **Save**, **Copy**, **Print**, **Clone**, **Redraw** and use **Toolbox** to edit the chart (**Fig. 2**). Fig. 2. Chart tools (Save, Copy, Print, Clone, Redraw, Toolbox). 14006-ORC-J 5 (12) #### 10.3. Reaction Equations You can write almost any kind of reaction equation into the HSC 8 Reaction Equation box, see **Fig. 3**. Here are some examples of valid equation syntax: $$2Cu + S = Cu2S$$ $H2O = H(+a) + OH(-a)$ $H2(g) = 2H(+a) + 2e$ - $H2O = 0.5O2(g) + 2H(+a) + 2e$ - $Ag = Ag(+a) + e$ - $3NO2(-a) + 2H(+a) = 2NO(g) + H2O + NO3(-a)$ $2AI(+3a) + 3S(-2a) + 6H2O = 2AI(OH)3 + 3H2S(g)$ Fig. 3. Input data for Reaction Equation calculations. Write the reaction equation into the box, see **Fig. 3**. If you have not given the stoichiometric coefficients for the species, you can press Balance to solve unknown coefficients. The balance button solves the coefficients on the basis of element balance equations. Therefore it cannot solve unknown coefficients if their number is larger than the number of elements in the corresponding reaction. Next to the Balance button, you may give a **multiplier**, which will be used to multiply all the coefficients in the reaction equation. The default value is 1, which means that the smallest stoichiometric coefficient in the reaction equation is 1. You can continue in the same way as in the One Chemical Formula option, see Chapter 10 (section 10.1). **Note** that the **Delta Format** and **Show Transitions** options have no effect on the results, because the enthalpy and Gibbs energy of a reaction are in the Delta format by definition. HSC calculates the stoichiometry of the reaction given by the user, and points out errors if the element balance is incorrect. The example in **Fig. 3** refers to the Mond process for refining impure nickel. In this process, raw impure nickel is first treated with CO gas at 60 °C to evaporate the nickel as a carbonyl gas. In the second stage, the temperature of the gas is increased to 200 °C to decompose the nickel carbonyl gas into pure metallic nickel and CO. This process works because the equilibrium of this reaction is on the right side (Equilibrium constant K > 1) at lower temperatures and on the left side (K < 1) at higher temperatures, **Fig. 4**. The reaction is exothermic (Δ H is negative) at all temperatures. November 20, 2014 Research Center, Pori / Lauri Mäenpää, Antti Roine 14006-ORC-J 6 (12) Fig. 4. Graphical results of Reaction Equation calculations. Vapor pressures p can be calculated by writing the reaction equation for the vaporization reaction concerned. For example, for pure magnesium the equilibrium is Mg = Mg(g). The activity a_{Mg} of pure magnesium is 1 and thus the vapor pressure in bar is equal to the equilibrium constant according to Eq. (11) in Chapter 8 Introduction and Eq. (1). See also Fig. 5 and Fig. 6. $$K = \frac{p_{Mg(g)}}{a_{Mg}} = p_{Mg(g)} \tag{1}$$ If a substance vaporizes into several polymers, all of them must be taken into account. The total vapor pressure is then the sum of all the individual partial pressures, if the gas phase behaves ideally. November 20, 2014 Research Center, Pori / Lauri Mäenpää, Antti Roine 14006-ORC-J 7 (12) | Reaction Equation | | | | | | | | | | | | | |-------------------|------------|---------|---------|---------------|--------|--------|--------------|--|--|--|--|--| | Mg = Mg(g) | | | | | | | | | | | | | | Reaction Data | | | | | | | | | | | | | | Т | ΔΗ ΔS ΔG κ | | | | | ., | | | | | | | | °c | kJ | J/K | kJ | ' | • | | og K | | | | | | | 500.000 | 143.884 | 110.035 | 58.811 | 1.063E-004 | | -3.974 | | | | | | | | 550.000 | 143.398 | 109.425 | 53.324 | 4.130E-004 | | -3.384 | | | | | | | | 600.000 | 142.876 | 108.810 | 47.869 | 1.368E-003 | | -2.864 | | | | | | | | 650.000 | 133.839 | 99.002 | 42.445 | 3.964E-003 | | -2.402 | | | | | | | | 700.000 | 133.163 | 98.289 | 37.513 | 9.689E-003 | | -2.014 | | | | | | | | 750.000 | 132.487 | 97.612 | 32.616 | 2.161E-002 | | -1.665 | | | | | | | | 800.000 | 131.810 | 96.966 | 27.751 | 4.458E-002 | | -1.351 | | | | | | | | 850.000 | 131.134 | 96.350 | 22.918 | 8.591E-002 | | -1.066 | | | | | | | | 900.000 | 130.458 | 95.761 | 18.116 | 1.561E-001 | | -0.807 | | | | | | | | 950.000 | 129.781 | 95.196 | 13.342 | 2.693E-001 | | -0.570 | | | | | | | | 1000.000 | 129.104 | 94.654 | 8.596 | 4.439E-001 | | -0.353 | | | | | | | | 1050.000 | 128.427 | 94.132 | 3.876 | 7.030E-001 | | -0.153 | | | | | | | | 1100.000 | 127.750 | 93.630 | -0.818 | 1.074E+000 | | 0.031 | | | | | | | | 1150.000 | 127.074 | 93.146 | -5.487 | 1.590E+000 | | 0.201 | | | | | | | | 1200.000 | 126.397 | 92.678 | -10.133 | 2.287E+000 | | 0.359 | | | | | | | | 1250.000 | 125.720 | 92.227 | -14.755 | 3.207E+000 | | 0.506 | | | | | | | | 1300.000 | 125.043 | 91.789 | -19.356 | 4.393E+000 | | 0.643 | | | | | | | | 1350.000 | 124.366 | 91.366 | -23.934 | 5.892E+000 | | 0.770 | | | | | | | | 1400.000 | 123.690 | 90.955 | -28.492 | 7.755E+000 | | 0.890 | | | | | | | | 1450.000 | 123.013 | 90.557 | -33.030 | 1.003E+001 | | 1.001 | | | | | | | | 1500.000 | 122.337 | 90.170 | -37.548 | 1.277E+001 | | 1.106 | Species Da | ata | | | | | | | | | | | | | Formula | M | Conc. | | Input Amounts | | | Extrapolated | | | | | | | | g/mol | wt-% | mol | g | Volume | Unit | From T(K) | | | | | | | Mg | 24.305 | 100.000 | 1.000 | 24.305 | 13.968 | ml | - | | | | | | | Mg(g) | 24.305 | 100.000 | 1.000 | 24.305 | 22.414 | I | - | | | | | | **Fig. 5.** The equilibrium constant K is equal to the vapor pressure in bar according to Equation (1) if the activity of magnesium is 1. The boiling point of magnesium is about 1100 °C beyond which its vapor pressure exceeds 1 bar. 14006-ORC-J 8 (12) **Fig. 6.** Results for several reactions can be plotted into a single chart with **Plot all data** to help the comparison. You can also calculate more complicated reactions. First, write the reaction as shown in **Fig. 7**, then press **Balance** for the coefficients, see **Fig. 8**, and finally press **Calculate** for the results, see **Fig. 9**. Note that for aqueous ionic reactions, HSC also calculates the electrode potential versus Standard Hydrogen Electrode (E vs. SHE) if an electron (e-) is used in the formula. Fig. 7. Write the reaction equation without stoichiometric coefficients and press Balance. Fig. 8. Press Calculate to display the results. 14006-ORC-J 9 (12) | Reaction Equation | | | | | | | | | | | | | |--|----------|----------|----------|------------|---------|--------------|-----------|--|--|--|--|--| | 2FeS2 + 19H2O = Fe2O3 + 4SO4(-2a) + 38H(+a) + 30e- | Reaction Data | | | | | | | | | | | | | | T | ΔΗ | ΔS | ΔG | К | | E vs. SHE | | | | | | | | °C | kJ | J/K | kJ | | | V | | | | | | | | 0.000 | 1497.322 | 1318.489 | 1137.177 | 3.300E-218 | | -0.393 | | | | | | | | 25.000 | 1322.639 | 687.984 | 1117.516 | 1.582E-196 | | -0.386 | | | | | | | | 50.000 | 1273.727 | 530.356 | 1102.343 | 6.309E-179 | | -0.381 | | | | | | | | 75.000 | 1227.176 | 391.590 | 1090.844 | 2.097E-164 | | -0.377 | | | | | | | | 100.000 | 1179.891 | 260.454 | 1082.702 | 2.675E-152 | | -0.374 | | | | | | | | 125.000 | 1129.764 | 130.485 | 1077.812 | 3.858E-142 | | -0.373 | | | | | | | | 150.000 | 1074.585 | -3.849 | 1076.214 | 1.375E-133 | | -0.372 | | | | | | | | 175.000 | 1011.966 | -147.532 | 1078.082 | 2.149E-126 | | -0.373 | Species Da | ata | | | | | | | | | | | | | Formula | M | Conc. | | Input A | | Extrapolated | | | | | | | | | g/mol | wt-% | mol | g | Volume | Unit | From T(K) | | | | | | | FeS2 | 119.967 | 41.210 | 2.000 | 239.934 | 47.796 | ml | - | | | | | | | H2O | 18.015 | 58.790 | 19.000 | 342.289 | 373.270 | ml | - | | | | | | | Fe2O3 | 159.692 | 27.427 | 1.000 | 159.692 | 30.476 | ml | - | | | | | | | SO4(-2a) | 96.058 | 65.992 | 4.000 | 384.230 | 0.000 | ml | - | | | | | | | H(+a) | 1.008 | 6.578 | 38.000 | 38.300 | 0.000 | ml | - | | | | | | | e- | 0.001 | 0.003 | 30.000 | 0.016 | 0.000 | ml | - | | | | | | Fig. 9. Results for an aqueous ionic reaction. The data used to calculate the results can be displayed by selecting a single substance in the **Reaction Equation** box, see **Fig. 3** and then pressing **Browse...**. The database content is shown in **Fig. 10**. Species can be imported to the Reaction Equation module by adding November 20, 2014 Research Center, Pori / Lauri Mäenpää, Antti Roine 14006-ORC-J 10 (12) the species first in the **Selected Species** box at the bottom of the database browser and then clicking **Import Items** from the top panel of the browser. Fig. 10. The database browser window. November 20, 2014 Research Center, Pori / Lauri Mäenpää, Antti Roine 14006-ORC-J 11 (12) ## 10.4. Reaction Equations Results The operation of the buttons in **Fig. 1** and **Fig. 2** were described in the previous chapter. The meaning of the results can be summarized as follows: - 1. If the equilibrium constant K is < 1 (or log(K) < 0), the reaction goes to the left. - 2. If the equilibrium constant K is > 1 (or log(K) > 0), the reaction goes to the right. - 3. A negative Enthalpy H of the reaction means that the reaction is exothermic, i.e. heat is released, Equation 7 in 8. *Introduction*. - 4. A positive Enthalpy H of the reaction means that the reaction is endothermic, i.e. heat is absorbed, Equation 7 in 8. *Introduction*. - 5. Delta Format has no effect on the results of reaction equations. - 6. In ionic reactions, potential E yields the electrochemical potential (in Volts) versus the Standard Hydrogen Electrode (SHE). Note, "e-" has to be included in the reaction. - 7. Equilibrium constant K is calculated using Equation (12) in 8. Introduction. November 20, 2014 Research Center, Pori / Lauri Mäenpää, Antti Roine 14006-ORC-J 12 (12) ## 10.5. References - 1. Barin I, Knacke O, and Kubaschewski O: Thermodynamic Properties of Inorganic Substances, Springer-Verlag, Berlin, 1973, Supplement 1977. - 2. Pankratz L.B.: Thermodynamic Properties of Halides, U.S. Dept. of the Interior, Bureau of Mines, Bulletin 674, 1984. - 3. Bailey S. M., Churney K. L., Nuttall R. L.: The NBS Tables of Chemical Thermodynamic Properties, Selected Values for Inorganic and C1 and C2 Organic Substances in SI Units, J. of Phys. and Chem. Ref. Data, Vol. 11, Suppl. No. 2, 1982.